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Abstract – 
 Natural disasters lead to severe deterioration of 

valuable highway assets, including pavements that 
should quickly return to service after extreme events 
such as flooding. Various prediction models were 
developed to predict pavement performance for 
several purposes, including maintenance 
management, budget allocation, and investment 
strategy. However, limited studies focused on 
developing a deterioration model for flood-affected 
composite pavements. This paper proposes a 
framework for evaluating and predicting the change 
in composite pavements’ roughness due to the flood 
probability. To this end, a cluster-based pavement 
deterioration model was developed and applied to a 
case study of 102 pavement sections from the LTPP 
database in the United States’ eastern region from 
2015 to 2019. Then, we used Markov Chain and 
Monte Carlo simulation on three generated clusters 
to predict the flood impact on three groups of 
pavements with different characteristics. The pivotal 
role of the proposed framework is predicting IRI 
values due to varying flooding probabilities in 
different pavement clusters. The results indicate that 
the pavement tends to deteriorate faster in the initial 
post-flood years if subjected to heavy or moderate 
traffic loading and precipitation conditions. This rate 
will tend to decrease as the age of the pavement 
increases. For the sections subjected to low traffic 
loading and low precipitation, the rate of 
deterioration for the initial post-flood years is less. 
Still, it will tend to increase as the age of pavement 
increases. 
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1 Introduction 
Natural disasters and extreme weather events such as 

flooding, frequent heavy rainfall, and snow contribute to 

deterioration in pavement more quickly than normal 
weather conditions. Some studies have been conducted in 
the past to understand the impact of flooding on the 
pavement network [1, 2, 3]. In 2005, two hurricanes, 
Katrina & Rita, hit New Orleans and the southeastern part 
of Louisiana in the US, submerging approximately 2,000 
miles of road length in flood runoff for five weeks [2]. 
Highway maintenance management and optimization, 
especially in the presence of extreme events, are critical 
[4]. Hence, decision-makers endeavor to develop 
efficient deterioration models, a key element of 
maintenance optimization, and establish pre-and-post 
flood strategies to predict pavement performance under 
flood conditions to decrease the loss of life and the 
physical loss of the assets themselves, damage to 
transport infrastructure, and socio-economic losses. Also, 
traffic loading, material quality, and surrounding 
geographical & environmental conditions are among the 
factors that cause pavement deterioration throughout 
their lifespan. Due to the fact that these required variables 
are stochastic, the Markov chain model as a stochastic 
model can describe the sequence of possible events [5]. 
Also, various researchers applying the Markov chain 
theory to construct facilities such as pavements and 
bridges to predict their deterioration [6, 7, 8, 9]have used 
the Markov Chain model for predicting pavement 
deterioration. Although many studies have developed 
deterioration models, we identified some gaps in the 
existing frameworks: (1) limited research was conducted 
on developing probabilistic pavement deterioration 
models for composite pavement networks. Some of these 
studies have considered single deterioration models for 
all the pavement sections; (2) most of the Pavement 
Management Systems (PMS) used by transportation 
agencies do not incorporate the effect of flooding in their 
prediction models. 

Considering a single deterioration model for various 
pavements underestimates or overestimates the pavement 
condition [10, 11]. Also, when large pavement stretches 
need to be maintained, prioritizing a particular pavement 
section’s maintenance work becomes complicated. In 
such a situation, pavement sections’ clustering is a 
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valuable tool for developing a section-wise maintenance 
strategy [12]. 

Various clustering algorithms were utilized in the 
previous studies. Overall, the K-means clustering 
algorithm is easy to apply, accurate, and effective in 
handling a large amount of data. Also, the K-means 
clustering algorithm was found suitable for unlabeled and 
non categorized such as LTPP [10, 12, 13]. 

Furthermore, precipitation and flooding would 
increase as tropical cyclones’ frequency increases [3]. 
Zhang et al. assessed the effect of the hurricane that 
occurred in New Orleans. They found a significant 
difference in the structural strength of pavement between 
the submerged and non-submerged pavement sections 
[14]. A recent study was conducted on these flood-
affected pavements by Chowdhury et al. to understand 
pavement's pre-flood and post-flood structural and 
surface conditions. They developed a deterministic 
deterioration model and found that pavement tends to 
lose its strength more rapidly due to flooding [15]. Also, 
Khan et al. conducted a study on these flood-affected 
pavements and developed a probabilistic road 
deterioration model by incorporating flooding effects [6]. 
To address these challenges, our main research objectives 
are to create a clustering algorithm to identify pavement 
sections with similar characteristics and to develop a 
cluster-based probabilistic deterioration prediction 
model in composite pavements under different flooding 
probabilities by leveraging the LTPP data in multiple 
states. 

2 Methodology 
We collected the data from the LTPP database, which 
does not contain the flood-affected pavement sections’ 
information. Then, we grouped pavement sections into 
three different clusters using the K-means clustering 
algorithm. Then, with the application of Markov chain 
analysis and Monte Carlo simulation, we developed a 
pavement deterioration model for each cluster and 
utilized it to predict the pre-and-post flood IRI 
(International Roughness Index) values of flood-affected 
pavement sections. We selected Markov chain, due to the 
continuous nature of pavement deterioration over time 
and the fact that the state-space of the deterioration 
process is finite in number. Furthermore, The Markov 
chain model focuses on the transition probabilities and 
the factors responsible for this transition instead of the 
factors accountable for condition degradation [17]. All 
these steps are shown in Figure 1. The steps utilized in 
this research are separately described in the following 
section. 

  

Figure 1. Overall methodology of the analysis 

2.1 Data Collection and Clustering 
We extracted the IRI, traffic loading (AADTT), 

temperature, and precipitation data from the LTPP 
database test sections, belonging to 102 different 
geographically and spatially composite pavement 
sections from 2015 to 2019. Figure 2 shows the extent of 
collected data and their geographical location.  

We selected sections data based on three criteria: (1) 
sections should be composite pavement, (2) sections 
must be in active monitoring status, and (3) sections 
should not have maintenance after 2015. The reason 
behind selecting sections with no maintenance was to 
remove the improving impact of maintenance (reduction 
in IRI) in the study. Due to the unavailability of the flood-
affected pavement data, we assumed a hypothetical 
flooding event between 2020 and 2021. 

 
Figure 2. Location of selected pavement sections 

It should be noted that all the sections will not follow 
the same deterioration pattern due to the spatial diversity 
of collected sections and, in turn, the difference in the 
contributing factors to their deterioration. To address this 
issue, we grouped the sections based on the collected 
historical data (traffic, temperature, and precipitation) 
using the K-means clustering method. The sections 
within each cluster are homogeneous with each other and 
heterogeneous between other clusters. Before clustering, 
we scaled datasets containing traffic, precipitation, 
temperature, and IRI information between 0 to 1. Then, 
the K-means clustering algorithm was used to cluster the 
sections. We used the K-means method since it is easy to 
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apply, accurate, and effective in handling a large amount 
of data [10, 13, 16]. In this study, based on evenly 
distributing pavement sections, we derived three clusters, 
CL_0, CL_1 & CL_2, as the optimal number of clusters 
and as the number of separate deterioration models. 
Table 1 shows the properties of these clusters. 

Table 1. properties of each cluster 

Cluster 
name  

Traffic 
(AADTT)  

Temperature 
(°F) 

Precipitation 
(In)  

CL_0 Moderate Low High 
CL_1 Low High Low 
CL_2 High Moderate Moderate 

2.2 Markov Chain Analysis 
The Markov chain model is a stochastic model that 

describes the sequence of possible events. The 
probability of the next event depends on the current event 
and not on the event before it [17]. The variables such as 
traffic loading, environmental aspects, and surface 
characteristics of the pavements are stochastic. Therefore, 
we developed the Markov Chain analysis, which 
comprises four matrices: IRI distribution table, transition 
matrix, transition probability matrix, and probability 
distribution matrix. First, we created the IRI distribution 
table and then developed the other three matrices based 
on it. The process acquired for developing these matrices 
is explained below. 
2.2.1 IRI Distribution Table 

The IRI distribution table was prepared by analysing 
each section’s historical IRI data and then grouping it 
into each year’s respective IRI bucket. A bucket is the 
IRI range value in m/km. We derived the IRI bucket 
range based on the following reasons: Pavement sections 
generally deteriorate with incrementing the IRI value 
within the range of 0.10 to 0.25 m/km every year [18]. 
The maximum number of pavement sections in each 
cluster falls within the IRI range of 0.5 to 1.75 m/km, and 
due to the low range of the IRI bucket, small changes in 
the sections were monitored. For uniformly distributing 
sections into each range bucket, we selected range 
buckets. The selected IRI bucket range is 0.25 m/km for 
cluster CL_0 & CL_2, while 0.2 m/km for cluster CL_1; 
this range is smaller for the cluster CL_1 because more 
than 90% of the sections have the IRI value less than 1.1 
m/km. 

2.2.2 Transition Matrix 

The transition matrix is an m x m matrix, where m 
represents the number of IRI range buckets. This matrix 
represents the number of sections that will change their 
IRI value from one range bucket to another in the next 
year. The IRI data in each cluster were analyzed and 

grouped into their respective IRI range bucket for 
developing the transition matrix. IRI range buckets for 
cluster CL_0 & CL_2 is 10, while CL_1 is 6. We used 
the five-year IRI data from 2015 to 2019 of each cluster’s 
sections to develop the transition matrix. We combined 
the IRI data into four groups, representing the change in 
IRI between each consecutive year. The pavement 
sections that show such a decrease in IRI value without 
any maintenance are not realistic for pavement 
deterioration, so we did not consider these sections in the 
analysis. 

2.2.3 Transition Probability Matrix 

The transition probability is a probability of a 
pavement section changing its state from the condition 𝑖𝑖 
at time 𝑡𝑡  to condition 𝑗𝑗  at time 𝑡𝑡 + 1 , combined in a 
matrix called the transition probability matrix (TPM). 
Several research studies were conducted to derive TPMs 
using various mathematical methods: the simplest 
proportion method [19], the expected value method [20], 
the minimum error method, the percentage transition 
method, the ordered Probit model, Bayesian technique, 
and conversion from the deterministic models. In this 
research, we utilized the percentage transition method. 
The percentage transition method was feasible for 
generating the Markov Chain transition probability 
matrix to derive the change in road condition state with 
respect to the previous state. This method addresses 
different explanatory variables used to develop a 
pavement deterioration model [7]. The transition 
probability of each pavement section can be calculated 
using this equation: 

𝑝𝑝𝑖𝑖𝑖𝑖 =  
𝑁𝑁𝑖𝑖𝑖𝑖
𝑁𝑁𝑖𝑖

 
(1) 

Where 𝑝𝑝𝑖𝑖𝑖𝑖  is the transition probability from state 𝑖𝑖 to 𝑗𝑗, 
𝑁𝑁𝑖𝑖𝑖𝑖  is the number of sections transition from state 𝑖𝑖 at 
time 𝑡𝑡 to state 𝑗𝑗 at time 𝑡𝑡 + 1. 
     For generating the Markov Chain transition 
probability matrix, we assumed:  The condition of the 
pavement sections cannot be improved without receiving 
any maintenance treatment, i.e., 𝑝𝑝𝑖𝑖𝑖𝑖 = 0 for 𝑖𝑖 >  𝑗𝑗, the 
pavement sections which reached their worst condition 
cannot deteriorate further, i.e., 𝑝𝑝𝑛𝑛𝑛𝑛 = 1 , and the 
pavement section cannot deteriorate by more than one 
state in a duty cycle. 
     The TPM is associated with time-independent and 
time-dependent Markov chain models. This research 
performed a time-independent Markov chain analysis to 
develop a pavement deterioration model. 
2.2.4 Probability Distribution Matrix 

The probability distribution matrix is used to predict 
the future condition of the pavement at any given year. 
The pavement network’s current condition is termed as 
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the initial state and described in terms of the initial state 
vector. The initial state vector of the pavement network 
is given by [21]: 

𝑎𝑎0 = [𝛼𝛼1,𝛼𝛼2, … …𝛼𝛼𝑛𝑛] 
Initial state vectors assume that all the 𝛼𝛼𝑖𝑖  must be 

non-negative numbers, and their sum must be equal to 
one. The TPM is denoted by 𝑃𝑃 and given by [21]: 

𝑃𝑃 =

⎣
⎢
⎢
⎢
⎡
𝑝𝑝11 𝑝𝑝12 … . 𝑝𝑝1𝑛𝑛
𝑝𝑝21 𝑝𝑝22 … . 𝑝𝑝2𝑛𝑛

. . … . .

. . … . .
𝑝𝑝𝑛𝑛1 𝑝𝑝𝑛𝑛2 … . 𝑝𝑝𝑛𝑛𝑛𝑛⎦

⎥
⎥
⎥
⎤
 

 

Where 𝑝𝑝𝑖𝑖𝑖𝑖  indicates the probability that a road is 
currently in state 𝑖𝑖 and will be in state 𝑗𝑗 next year, as the 
initial state vector, all the TPM numbers must be non-
negative, and the sum of each row must be equal to one. 
The probability distribution of the states at a future time, 
say 𝑡𝑡 =  1  and at time 𝑡𝑡 , may be calculated from the 
TPM generated and the initial state vector and is shown 
in equations 1 and 2 [21]. 

𝑎𝑎1 =  𝑎𝑎0 𝑃𝑃1 (2) 
𝑎𝑎𝑡𝑡 =  𝑎𝑎0 𝑃𝑃𝑡𝑡 (3) 

Where, 𝑎𝑎1 is the probability distribution at time 𝑡𝑡 =
 1,  𝑎𝑎𝑡𝑡 is the probability distribution at time 𝑡𝑡, 𝑎𝑎0 is the 
initial state vector at time 𝑡𝑡 =  0, and 𝑃𝑃𝑡𝑡 is TPM raised 
to the power of 𝑡𝑡. In equations (2) and (3), we assumed 
that the transition probability matrix (𝑃𝑃) of the pavement 
is constant throughout the time; we assumed the 
deterioration pavement according to this single transition 
probability matrix 𝑃𝑃  throughout its lifespan. This 
equation is used for performing time-independent 
Markov chain analysis. We assumed that the initial 
condition of the pavement was perfect. 𝑎𝑎(0) is the initial 
state vector. 

𝑎𝑎(0) = [1 0 0 0 0 0 0 0 0 0] 

We generated the probability distribution matrix by 
substituting the variables 𝑎𝑎(0) and 𝑃𝑃𝑡𝑡 in equation 3. 

2.3 Probabilistic Deterioration Model 
The main objective of this research is to generate a 

probabilistic pavement deterioration model. To this end, 
we used the Monte Carlo simulation to generate a 
probabilistic deterioration. In the Monte Carlo simulation, 
an uncertain variable, roughness (IRI), is assigned 
multiple values by random variables’ intervention to 
achieve multiple results. The implementation of the 
Monte Carlo simulation was done by transforming the 
TPM into a cumulative TPM. In each iteration, we 
generated 20 uniformly distributed random numbers 

between 0 and 1 to have the pavement deterioration 
model for the next 20 years; we generated 1500 
deterioration models. Therefore, we generated 30,000 
random numbers in the simulation. These random 
numbers represent the IRI probability, and we used them 
to predict future IRI values. 

2.4 Modeling Flooding events  
We designed a framework (a pavement deterioration 

model showing a change in the IRI of the pavement 
surface) for incorporating the effect of different flooding 
probabilities in the deterioration model. Therefore, we 
used two types of TPMs: non-flooding TPM and flooding 
TPM. Both TPMs needed to be developed based on the 
flood-affected pavement sections’ historical IRI data. 

For making this framework, we considered these 
assumptions: (1) the initial pavement condition is 
excellent, and it was developed based on the year 2020, 
(2) roughness is majorly affected by the accumulation of 
flooded water on the pavement surface, (3) the annual 
flooding probability increases, (4) hypothetical flooding 
event will occur between the year 2020 and 2021 because 
the LTPP database does not contain the IRI data of flood-
affected pavement sections, (5) for the next 3-4 years 
rehabilitation work will not be done. 

To develop a flood-affected predict model: first, we 
studied the different flood recurrence intervals: 2-years, 
5-years, 10-years, and 20-years. Second, we determined 
the annual flooding probability for developing a 
deterioration model. The probability of the above-
specified flooding events is 1, 0.5, 0.2, 0.1, and 0.05, 
respectively. Third, we generated the deterioration model 
of pavement sections at these specified flooding 
probabilities. Four, we generated the state vectors 
representing the transition of the pavement sections into 
various states. Five, we utilized a set of random numbers, 
are compared with the flooding probability to determine 
a non-flooding or flooding TPM; the chance of selecting 
flooding TPM depends upon the chance of flood 
occurrence. Six, a second random variable is generated to 
estimate the pavement’s future state. We generated the 
final pavement state by taking the average of all the 
simulated states. We repeated this process for 10,000 
trials and 20 years to generate the deterioration model for 
different flooding probabilities. 

3 Results 
The results derived from the suggested methodology 

for generating the pavement deterioration model in the 
previous section are illustrated in this section. We depict 
sections’ IRI value, transition, transition probability, and 
probability distribution matrix for one of the clusters as 
an example. Then we compare the results of the 
deterioration model for the composite pavement with or 
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without flood affecting all clusters. 

3.1 Pavement sections clustering 
Figure 3 shows the scatterplot of sections through 

their cluster identity using their geographical location. 
Table 2 shows a cluster summary based on each of the 
cluster’s traffic, temperature, and precipitation 
characteristics. Each cluster comprises sections from 
various states of the United States.  

 
Figure 3. Geographical locations of pavement 
clusters 

Table 2 Section summary of each cluster 

 

3.2 Sections’ IRI value 
To understand and validate the IRI data quality of 

each cluster, we prepared the IRI descriptive statistic for 
each cluster of each year. Table 3 shows The IRI 
distribution for cluster CL_2. As per the descriptive 
statistics, sections’ IRI value in the specified interquartile 
range tends to increase every year. It suggests that the 
pavement sections tend to shift towards the right side of 
the curve, representing higher IRI values. Higher IRI 
values represent deterioration in pavement sections. 
Hence, the IRI data collected showed pavement 
deterioration and was suitable for developing a 
deterioration model. 

Table 4 shows the IRI distribution table for the CL_0 
clusters. This table consists of six columns. The first 
column represents the IRI bucket range in m/km units. 
The second column represents the number of sections 
divided into five sub-sections representing the number of 
sections in five different years from 2015 to 2019. The 
third column represents the entire sections, calculated by 
adding the number of sections each year in a particular 
range bucket. The fourth column represents the 
percentage of sections, calculated by taking the 
summation of total sections in each range bucket and 
dividing it by the sum of the total sections row. The fifth 
row represents the cumulative percentage of the sections, 
calculated by adding the percentage value of the section 
in each range bucket to the sum of all previous percentage 

values. The sixth row represents the lower end range of 
the bucket. For example, in Table 4, eight sections in the 
range bucket of 0.5 to 0.75 m/km in 2015, while six 
sections in 2017 are in the same bucket. The IRI 
distribution table shows that pavement sections tend to 
shift in the higher IRI range bucket as time increases. 
This trend indicates that the IRI of pavement sections is 
deteriorating with time.  

Table 3 IRI descriptive statistics of cluster CL_2 

 

Table 4 IRI Distribution table for cluster CL_0 

 

3.3 Transition Matrix 
Table 5 shows the transition matrix for the CL_0 

cluster. This table represents the deterioration of 
pavement sections. Each cell’s values represent the 
number of sections that transitioned its state from one IRI 
bucket range to another in the next year. This matrix 
satisfies the requirements of the Markov property, and we 
further used this matrix in developing the Markov Chain 
prediction model. In all Transition Matrix tables, the cells 
showing a zero represent no transition of pavement 
sections in this IRI bucket range for the next year. For 
example, in Table 5, 3 pavement sections transitioned 
from the IRI bucket range of 0.5-0.75 m/km to 0.751-1.0 
m/km range, while one sections transitioned from 0.5-
0.75 m/km to 1.0-1.250 m/km range. 

3.4 Transition Probability Matrix 
For developing the transition probability matrix, we 

used the transition matrix. Table 6 shows the transition 
probability matrix for the CL_0 cluster. For example, in 
Table 6, 72.7% of pavement sections remain in the same 
IRI bucket range of 0.5 – 0.75 m/km for the next year, 
while 13.6% of pavement sections change their state to 
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0.751-1.000 m/km IRI range bucket. We used this matrix 
to develop a probability distribution matrix for a 
pavement deterioration model in non-flood conditions. 

Table 5 Transition Matrix for the Cluster CL_0  

 

 

Table 6 Transition Probability Matrix of Cluster CL_0  

 

3.5 Probability Distribution Matrix 
Table 7 shows the probability distribution matrix for 

the CL_0 cluster and represents the prediction of 
pavement sections in a particular IRI range bucket. For 
example, in Table 8, in year 1, 72.7% of sections will 
remain in the IRI range of 0.5-0.75 m/km, while in year 
5, 20.3% of the section will remain this IRI range, and so 
on forth. After generating these three matrices, the 
Markovian Chain analysis is completed and used in 
developing the deterioration model for all the clusters. 

3.6 Monte Carlo simulation logic 
 We compared the random number in each iteration 

with the cumulative TPM values to find the IRI value of 
the following year’s pavement section. Table 8 shows the 
cumulative TPM for cluster CL_0.  

The IRI range bucket of 0.5 to 0.75 m/km represents 
the perfectly smooth pavement surface. So, the 
comparison starts from this IRI range until the 
cumulative TPM value was greater than the random 
number; this process continued. The next iteration will 
start from the same IRI range in which the last iteration 

stopped. We continued this procedure for each of the 20 
random numbers (number of prediction years) in a trial 
and repeated for 1500 trials (number of deterioration 
models). The final deterioration model was generated by 
taking the average of all the IRI values in their respective 
year in each iteration. 

Table 7 Probability Distribution Matrix of Cluster CL_0 

 

Table 8 Cumulative Transition Probability Matrix for 
the Cluster CL_0  

 
For example, in Table 8, the first random number 

generated was 0.52. This number was compared with the 
cumulative TPM value of 0.727, located in the leftmost 
corner, in the 0.5 to 0.75 m/km IRI range. The random 
number 0.52 is less than 0.727. Therefore, the IRI 
transition in the first year did not happen, so we allocated 
0.5 to the IRI value in this trial. If the next random 
number generated was 0.75, it is compared with 0.727, 
i.e., 0.5 to 0.75 m/km IRI range. The random number 
0.75 is greater than 0.727, so the comparison moves to 
the next IRI range, 0.75 to 1.0 m/km. The cumulative 
TPM value in this IRI range is 0.864, greater than 0.75; 
therefore, the comparison stops here, so we allocated 
0.751 to the IRI value for the second year. If the third 
random number again stopped in the same IRI range of 
0.75 to 1.0 m/km, the IRI value allocated for the third 
year would be 0.752. This kind of pattern will continue 
until a random number stops in a different IRI range. 

3.6.1 Results of Deterioration Model with No-flood 

Each year’s average IRI value is plotted against time 
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to obtain the deterioration model. Figure 4 shows the 
deterioration model of each cluster. The trend in Figure 4 
for the CL_0 illustrates that the IRI will increase 
throughout 20 years, representing continuous pavement 
deterioration. From 2020 to 2025, the IRI of these 
sections will increase by the average rate of 0.150 m/km 
each year. After 2026, it will increase by the average rate 
of 0.135 m/km till 2029; then from 2030, it will increase 
by the average rate of 0.093 every year till 2034; and then 
from 2034, it will increase by the average rate of 0.052 
m/km every year till 2039. Due to the characteristics of 
this cluster (heavy precipitation and moderate traffic 
loading), the increment in the deterioration rate will be 
highest for this cluster compared to the other two clusters. 

The CL_1’s roughness value will start at 0.50 m/km 
in 2020 and reach 1.15 m/km in 2039, representing 
continuous pavement deterioration over 20 years. From 
2020 to 2025, the IRI of these sections will increase by 
the average rate of 0.02 m/km each year; after 2026, it 
will increase by the average rate of 0.043 m/km till 2034; 
and then from 2035, it will increase by 0.030 m/km every 
year until 2039. Due to the characteristics of this cluster 
(lower traffic and precipitation), this cluster’s 
deterioration rate is low compared to the other two 
clusters. However, the deterioration rate will increase as 
the pavement age increases because of high temperatures. 

The CL_2’s roughness value will start at 0.585 m/km 
in 2020 and reach 2.005 m/km in 2039, representing 
continuous pavement deterioration over 20 years. From 
2020 to 2026, the IRI will increase by the average rate of 
0.103 m/km each year; after 2026, it will increase by the 
average rate of 0.067 m/km till 2032; and then from 2033, 
it will increase by the average rate of 0.057 m/km each 
year until 2039. Sections in this cluster are subjected to 
heavy loading conditions; therefore, this trend aligns with 
expectations. This cluster represents the classic example 
of a newly constructed pavement. As the age of pavement 
increases, it tends to deteriorate faster just after its 
construction, and as the age of pavement increases, the 
deterioration rate tends to decrease. Hence, this cluster’s 
deterioration rate will be high from 2020 to 2026, and 
then it will start falling as the year progresses. 

3.6.2 Results of Deterioration Model with Flood 

Figure 5 shows the predicted roughness by a jump in 
the IRI value due to hypothetical flooding events of 
sections in clusters CL_0, CL_1, and CL_2, respectively, 
at different flooding probabilities between 2020 to 2021. 
Table 9 shows the hypothetical flooding matrix for the 
cluster CL_0. For example, in Figure 5, the CL_0 
pavement roughness in 2021 will be 1.603 m/km at a 5% 
probability of flood, while 1.747 m/km at a 50 % 
probability of flood. The roughness-based deterioration 
model tends to decrease when post-flood maintenance is 
applied to the sections; hence, we show roughness 

prediction for the first few years at different flooding 
probabilities. In all clusters of Figure 5, the flood’s 
maximum impact is shown in 2021 because it occurred 
between 2020 and 2021. This impact tends to reduce as 
time increases. 

  
Figure 4. Deterioration Model of the three clusters  

Table 9 Hypothetical Flooding TPM for cluster CL_0 

 

4  Conclusion 
The primary objective of this research was to develop 

a cluster-based probabilistic flood-affected pavement 
deterioration model for composite pavements. The 
results indicate that the pavement tends to deteriorate 
faster in the initial years if subjected to heavy or moderate 
traffic loading and precipitation condition. This rate will 
tend to decrease as the age of the pavement increases. 
Similar trends were shown by the deterioration model of 
clusters CL_1 and CL_2. Suppose the pavement sections 
are subjected to low traffic loading and low precipitation. 
In that case, the rate of deterioration for the initial years 
is less, but it will tend to increase as the agethe  of 
pavement increases. Also, the LTPP data illustrate that 
the impact of flooding on the pavement’s roughness is 
maximum when the probability of flooding is maximum, 
which confirms the literature. 
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Figure 5. Pavement deterioration model at 
different probability of flooding for CL_0, CL_1, 
and CL_2 
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